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A CONSTRAINED RISK INEQUALITY WITH
APPLICATIONS TO NONPARAMETRIC
FUNCTIONAL ESTIMATION

By LAWRENCE D. BROWN! AND MARK G. Low?

University of Pennsylvania

A general constrained minimum risk inequality is derived. Given two
densities f; and f, we find a lower bound for the risk at the point 6 given
an upper bound for the risk at the point 0. The inequality sheds new light
on superefficient estimators in the normal location problem and also on an
adaptive estimation problem arising in nonparametric functional estima-
tion.

1. Introduction. The problems of estimating a function at a point under
squared error loss and the whole function under integrated squared error loss
have held a central position in the nonparametric functional estimation
literature. In particular, each has received a fairly detailed analysis in
density estimation, nonparametric regression and white noise models.
Progress to date can be contrasted as follows.

In both problems asymptotic rates of convergence are typically slower than
Vn . For integrated squared error loss, asymptotically minimax procedures
have been found when the parameter space is a Sobolev space. For a given
space these procedures may be chosen to be linear. For the pointwise estima-
tion problem, typically there do not exist linear procedures which are asymp-
totically minimax. However, under mild regularity conditions appropriately
chosen linear procedures have maximum risk within a small constant multi-
ple of the minimax risk. See, for example, Ibragimov and Hasminskii (1984)
or Donoho and Liu (1991). In particular, minimax rates of convergence can be
achieved by linear procedures.

One of the most important results for the global estimation problem was
the construction of adaptive estimators which are simultaneously asymptoti-
cally minimax over a large number of Sobolev spaces; see Efromovich and
Pinsker (1984), Efromovich (1985) and Golubev (1987). Such adaptive proce-
dures have not been found for the pointwise estimation problem.
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Recently Lepskii (1990) has shown that for a white noise model it is not
possible to find adaptive estimators for the pointwise problem which preserve
minimaxity over a range of Lipschitz classes. Furthermore Lepskii showed
that if an estimator is asymptotically rate minimax over one Lipschitz class,
it must inflate the maximum risk over the other Lipschitz class by at least a
logarithmic factor of the sample size. Lepskii even showed that these bounds
can be attained. See also Lepskii (1991, 1992), and see Donoho and Johnstone
(1992, 1994) and Efromovich and Low (1994) for some recent, related results.

In this paper we develop a two point inequality which is particularly well
suited to providing lower bounds for adaptive estimation problems. The
inequality gives, in a general setting, a lower bound for the squared error risk
at one parameter point subject to having a small risk at another parameter
point. The relationship to adaptation is spelled out in Section 4. Such an
inequality is also related to the study of s-minimax procedures and to the
notion of superefficient estimation. The notion of e-minimax procedures (also
called almost subminimax procedures) was introduced by Robbins (1951) and
Frank and Kiefer (1951) and further studied by Hodges and Lehmann (1952)
and Bickel (1983, 1984). An example of superefficient estimation was found in
Hodges (1952) and many further results were obtained by Le Cam (1953). We
apply our inequality to this topic in Section 3A.

2. A constrained minimum risk inequality. Let Z have distribution
with density f, or f, with respect to a measure u. For any estimator &
based on Z, its risk is defined by

(2.1) R(¢,8) =E(¢ - 8)" = [ (¢~ 8(2))"f,(x)n(dx).

The following theorem gives a lower bound for R(6,, §) given that R(6,, §) <
%, In the theorem and subsequently let q(x) = f,(x)/f,(x) and

(2.2) I=1(6y, 65) = Ey(q*(X)).

[g(x) = o for some x is possible, with the obvious interpretation q(x)f,(x) =

foLx).]

THEOREM 1. Let § = 0, — 0, and assume 0 < & < |6/ VI and R(8,, 8) <
&2, Then

(2.3) R(6,,8) > (16| - &VT).

Hence, also,

( 23\/7)
(2.4) R(6,,8) = 621 — .

|6l
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PROOF. By translation invariance we need only prove the theorem for
6,=0, 6, = 60> 0. We need to find § which minimizes R, = [(§(x) — 6)* X
fo(x)u(dx) subject to R, = [82(x)f,(x)u(dx) < 2. By Lagrange multipliers
the minimizing & satisfies

2(8(x) = 0)fp(x) +228(x)fo(x) =0
for some A > 0. If A = 0, then 8(x) = 6 and it follows that 62 < &2, which
contradicts the assumption that & < 6/ VI since I > 1. Hence A > 0 and
ofi(x) _ pba(x)
fo(x) + Afo(x) 1+ pg(x)’
where p = 1/A. [If g(x) = «, then 8(x) = 6.] Furthermore, this & satisfies
R, = &2, so that

(2.5) 8(x) =

pq(x)
1+ pg(x)

(2.6) 2= 0%

Then, by Cauchy-Schwarz,

eVl = G(f
(27) <[ [ pConcan)
pq(x)

_0f1+pﬂx)

since q(x)fy(x) = f,(x). Hence

) fo(x) u(dx).

pq(x)

9 1/2
m) fo(x)#(dx))

)ﬁ(x)ﬂ(dx)

+ pq(x)

fo(x) ’
(2.8) (f T+ pa(n)* dx))

< ezf
=R,

since (8(x) — 6)2 = 62/(1 + pg(x))? by (2.5). [In the second inequality of
(2.8) we have again used Cauchy—-Schwarz.] This proves (2.3). Equation (2.4)
follows because (@ — b)? > a?(1 — 2b/a) for a,b > 0. O

(6- &) <61 ( flpq( i fa(x)u(dx))

) £, () ()

1+ pg(x)

It is of interest to note that the first bound in the theorem, (2.3), is sharp.
As before, let 6, =0, 6 = 6, — 6, > 0.
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PROPOSITION 1. Fix B> 1 and 0< &< 6/VB. Let f, be the uniform
distribution on (0, 1) and let f, be the uniform distribution on (0, B~!). Then
I=Band

(2.9) min{R(6, 8): R(0, 8) < &2} = (6 — &vI)".
Hence the bound (2.3) is attained.
ProOF. The best estimate of 6 subject to R(0, §) < £? is

5(x) = 0, if Bl<x<1,
eVB, if0<x<b 'l

[(2.5) shows that the best & is constant on the region 0 < x < B™! and 0 on
the region B™! <x < 1. Then, R(0,6) = &2 yields (2.10).] This estimator
satisfies R(6, 8) = (6 — &VT)? and verifies (2.9) in view of Theorem 1. O

REMARKS. It can be seen that apart from arbitrary measurable transfor-
mations of the sample space, the example in the preceding proof is the only
one in which the minimum in (2.9) is the same as (2.3). In other words, the
bound in (2.3) is attained if and only if the likelihood ratio, g(x), takes only
the two values 0 and 1.

In many applications f; and f, will be densities of independent identi-
cally distributed random variables X,..., X,,, each with density f{". Letting

gP(x) = f{P(x)/f{P(x) and IV = E, ((q(l)(X))z) we see that the information
measure I satisfies

(2.10) I=(IM)",

Furthermore, the bound in Theorem 1 is still sharp because letting fo, be
uniform on (0, 1) and £, be uniform on (0, I~'/") yields

min{R(9, 8): R(0, 8) < 2} = (0 — &VT)’
for /T < 6, as in Proposition 1.
3. Applications.

A. Superefficiency in the normal location model. As a first and simple
example, the inequality given in the last section can be used to yield the
following result about superefficient estimates in the standard normal loca-
tion model.

Let X,,..., X, beiid. N(6,1) with 6 € ®,. Write R(6, §,) for the risk of
an estimator §, [based on (X}, ..., X,)]. Thus

(3.1) R(6,5,) =E(6-8,)°
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THEOREM 2. Let &, —> © and let (In ¢,/n)"/? € ©,. If

(3.2) limsupne,R(0,8,) < «,
n-—o
then
n
(3.3) limsup( ) sup R(#6,3,) > 0.
n—w ln &, €0,

REMARK. (3.3) with In ¢, deleted, ®, = (—1,1) and the right-hand side
replaced by « is of course implied by (3.3) and is well known. See, for
example, pages 407-408 in Lehmann (1983).

ProOF OF THEOREM 2. Since )_f_is sufficient, we need only consider esti-
mates 8§, which are functions of X. Now if (3.2) holds, then there exists N
and M < « such that for all n > N,

M
R(0,8,) < .

ne,

Note that X ~ N(6,1/n) and we may apply Theorem 1 with £, ,, the density
of a normal distribution with mean 6 and variance 02 = 1/n. Take 6, = 6 =
(In &,/n)"/% and 6, = 0. Then

2 2
(3.4) I= [:) fo’};;(gx) dx = exp(}e—i) = exp(%) =¢,.
Now by (2.4), if n > N,
R((lnen)l/2 8) In g, (1_ 2(M/n8n)1/28,}/2)
n )’ n (In &,/n)"*
2MV/?
~ (In en)1/2)'

The theorem is proved by taking limits since 2M'/2/(In ¢,)"/? > 0 as
n — oo, [

1\

(3.5)

In e

n

Il
S
——
—

B. Superefficiency in the white noise model. We now turn to our main
application of Theorem 1. Consider the following white noise model
(3.6) dX, =f(t)dt +

1 1
aw,, —-=—=<t=< fes,

Vn 2 2’
where W, is Brownian motion on [-1/2,1/2].

This model has been studied extensively as a prototypical model for many
other functional estimation problems such as nonparametric regression and
density estimation. See, for example, Ibragimov and Hasminskii (1981), Low
(1992), Donoho and Low (1992), Brown and Low (1996) and Nussbaum
(1996).
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We shall focus on the following class of parameter spaces. Write f*)(x) for
the £th derivative of f and let

(3.7) F(k) ={feL*(-1/2,1/2): If®(x)l < M Vx}.

Minimax rates of convergence, as n — «, for estimating f(0) are well
known. For estimators 8, based on the signal (3.6), write E.(f(0) — §,)* for
the mean squared error for estimating f(0). Then

(3.8) 0 < limsupn?*/@**Dinf sup E:(f(0) - b‘n)z < o,
n— o 871 fe.?(k)

THEOREM 3. Let ¢, » =, n/Iln g, »  and let 8, be estimators based on
(3.6). If

(3.9) suplf{F(x)l =m <M
X
and
(3.10) lim supn?*/@** Vg E,(£,(0) — 8,)" < =,
n-— o

then

n \2R/@RED .
(3.11) liminf(1 ) sup E((f(0) —8,)" > 0.

noe \ D&, feF (k)

[As noted in the introduction, a similar statement, but with a different
proof, appears in Lepskii (1990).]

Proor. Let g: R — R be a k times differentiable function such that:

(1) g(0) > 0;

(i) g has compact support;
(iii) for some M > m, |g™(x)| < M — m Vx;
(v) [*.g%(x)dx = 1.

Such a function is easy to construct. Set

n \R/@E+D
(3.12) a, = (ln ., ) ,
i \L/@E+D
(3.13) B, = ( e, ) .
Then
(3.14) aZf, = —
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and
Bi
(3.15) PR
Let f,:[—1/2,1/2] — R be defined by
t
(3.16) £t = fo(t) + & f )

n

By (8.11), assumption (iii) for g and (3.15), f, € (k) Yn. Write P, for the
probability measure associated with the process

dXt=fn(t)+71;“th, —%sts%.
Then a sufficient statistic for the family of measures {P{, P;'} is given by
dP}
(3.17) T,=1n apr

Set y, = nfY2,(g%(B,(¢t)/a? dt. Then

under PJ, Tn~N(—%,yn),

under P/, Tn~N(2§1,yn).

Now since B, » =, there exists an N, such that for all n > N, g(8,¢) = 0 if
[¢| > 1/2. Then by assumption (iv) for g and (3.14) it follows that for n > N,
v, = In¢g,.

If assumption (3.10) of Theorem 3 holds, there exists an R < % and
N, > N; such that for all n > N,,

R
2
(3-18) : Efo(f(o) - 8n) = n2k/@k+Dg -

Since T, is sufficient for {P§, P;'} we may apply Theorem 1 with 6, = £,(0),
0y = £,(0) = f,(0) + (g(0)/e,), py, the density of 7, under P; and p, the
density of T, under P;, where we have used p, instead of f, for the
densities in Theorem 1. By (3.4),

2 2
Pe,(x) s
I(0) = | —/——=dx =exp|— | =exp(y,) = &,
(6) fp‘,l(x) (y) (%)
for n > N,.
Theorem 1, (2.4), yields for n > N,,
) 2
g“(0)
(3.19) E, (f,(0) - 8,)" = ——(1-1,),
where
9c1/2R1/2 2R1/2
(3.20) A -

n = (2(0)/a, )nt/@F+Dg1/Z ~ 2(0)(In 5, )/ @D
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Then A, —» 0 as n = «© and hence by (3.12) and (3.19) it follows that
)2k/(2k+ 1

lim inf (

n— o

Ine Efn(fn(o) - 5n)2 > g2(0) >0

n

and the theorem is proved. O

REMARK. One may also also consider Sobolev parameter spaces in place of
the Lipschitz spaces defined in (3.7). Thus, suppose the parameter space is

Fs(k) = {feL2(— 1/2,1/2): fP(=1/2) =f9(1/2) =0Vj=0,...,k—1,

[ () ax < 7).

In this case the optimal rate for estimating f(0) is n®*~1/2% in place of the
rate n2%/@%*1D of Theorem 3. See, for example, Donoho and Low (1992). For
this case, Theorem 3 remains valid with the obvious modification to (3.9) and
with this optimal rate substituted into (3.10) and (3.11). The proof is very
similar to that of Theorem 3. The principal difference is the definitions of «,,
B, and g in (3.16) in order to establish a suitably unfavorable two point
problem, as is done above (3.18). These «,, B,, & are given via the hardest
linear subproblem algorithm, and are explicitly described in Donoho and Low
(1992). Note that here g is really g,, that is, its form as well as its scaling
depend on n.

4. Adaptation. Theorem 3 of the last section sheds new light on adapta-
tion in the white noise model. For a sequence of estimates to be adaptive over
two classes (k,) and F(k,) given by (3.7), where k,, k, are integers with
k, < ky, we would require

(4.1) limsupn?*1/@4+ D sup E,(£(0) - 8,)* <
n—w feF(k,)

and

(4.2) lim supn?*2/@** D sup  E.(£(0) — 8,)" < .
n— feF(ky)

In particular (4.2) must hold (with sup deleted) for some fixed f, € F(k,).
Now since #(k,) c F(k,), f, € F(k,), and it follows that

(4.3) limsupn?t1/@hit D@k @kat DR DR (£ (0) ~ 8,)" < oo.

n—oo

Theorem 3 then yields that

sup E(f(0) - 6n)2 >0

n )2k1/(2k1+1)
feF (k)

4. i —_—
(4.4) hmsup( —

n-—w ]-



2632 L. D. BROWN AND M. G. LOW

and it follows that (4.1) cannot hold if (4.2) holds. Hence, adaptive estimation
over any two classes F(k,) and F(k,), ky # ky, is impossible. (A similar
conclusion is also valid for the Sobolev situation discussed in the preceding
remark.)

In fact, a similar result can be proved under fairly general conditions using
Theorem 1 and hardest one-dimensional subfamily arguments found in
Donoho and Liu (1991).

In particular, suppose that T is a linear functional and ®; and ®, are

convex and symmetric subsets of L, with optimal rates of convergence given
by

0 < liminfn%inf sup (T, — T(t’)))2 < o,
n—e Tn i
where 0 < g; < gy < 1.
Then it follows from essentially the same arguments used to prove the
above that if

liminfn?: supE(Tn - T(()))2 < oo,

— 0
n (1)2

then

. 0 n QI a 2
hirilo?f(ﬂl——’—l-) sglpE(Tn - T(6)) > 0.

5. Nonparametric regression and density estimation models. In
this section we show, with only minor modifications in the proofs, that
Theorem 3 also holds in the nonparametric regression and density estimation
models. This naturally yields analogs for the lack of adaptivity statement in
Section 4.

The nonparametric regression model is given as follows. For each n, set
t,,=—3+(@/n),i=0,...,n, and let

Y =f(tm') +e;, i=1,...,n

(5.1) .
fes(k), e iid. N(0,1),
where # (k) is given by (3.7).

For estimates §, based on (5.1) the minimax rate of convergence is the
same as in the white noise model and is given by (3.8). Moreover Theorem 3
also holds for estimators 8, based on (5.1). The proof is essentially the same
as in Section 3. Define g,c, a,, B, as before. Write P; for the probability
measure on R" generating (5.1). Then T, = In(dP;/dPy) is sufficient for
{Pg, P;"}. Set
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Then
Y
under P¢, T, ~N(——2—,')’,{),
. Yo
under P, T, ~N 250 )

Note that for large n,

2
, 172 8 (But)
Yo = T = nf_1/2 a? dt

and the distributions of T, are close to those given in Section 3. Now define g
by
E(Bnt) =g(ﬂntni)’ tn,i—lstStn,i’i=1”"’n'
Then
_2 nt
' = n[ g LA ([z ) dt

Ya
@,

and
172 82( B,t) 12 8%( Bt
o BB e B

2
-1/2 Q, -1/2 a,

_n_ 1/2 9 -2
2] et (Bt 8 (Bt

IA

n 2 .
L a0 g A

,i—1

Note that since |g*(x)| < M and g has compact support, it follows that for
some M, M,,

(5.2) lg(x)l <M, Vx,
(5.3) lg’'(x)l <M, Vx

and hence for ¢, ,_, <t <t,,

|g2( Bnt) _§2( Bnt)l =< 2]‘llMZ ﬂnlt - tn,i—ll + M223712(t - tn,i—1)2

and
) & [t 202 2
=l < = T [ 2MMy Bt — 1ol + MEB2(t ~ t, ;1) dt

noj=1"%ni-1
n oM. M 1 . 21

- 22 2By 7 T MaBi3 3
M\M,B, M;B1

- a? 3 a’n’

n n
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Now by (3.12) and (3.13),

B, B 1
— >0 and —5— -0 asn-ow
a; in

and hence y, = v, + u,, where u, — 0 as n — . The rest of the proof follows
that given in Section 3 except that for large n,

I=¢, exp(m,)
and (3.19) becomes
g%(0) M
(5.4) E(£,(0) - 5,)" = £ (1 Y exp(—z—-)),

n

where exp(pu,/2) > 1as n — o«

We now turn to the density estimation problem. Let X,,..., X, be iid.
each with density F € (k). Then once again Theorem 3 holds for estimators
based onXj,..., X,. For simplicity we shall give a proof for the case where
the point of superefficiency is the uniform density. In other words, f,(¢) =1
on[—1/2,1/2]. Once again define g, ¢, a, and B, as in Section 3, but with
the added restriction that [g(x) dx = 0. To apply Theorem 1 we need to find
upper bounds for

fnz(xl)“' fnz(xn)
I=
f fo(xq) - fo(x,)
Now since f,(¢) =1on[-1/2,1/2],

(5.5) dx, -+ da,.

r

1= [1/2 (1+M) dt]

-1/2 o

n

azlﬁ / gZ(t))

Ineg, \"
— {1+ nn") [by (3.14)]

=1+

(5.6)

X n
< exp(ln ¢,) [since if x>0 (1 + ;) < ex]

=g,.

Then as in Section 3 for large n,
2
2 &°(0)
Ef,,(fn(o) - 6n) = az (1 - )‘n)’

n

where A, is defined by (3.20). Now take limits and the theorem follows just as
in Section 3.
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